Showing posts with label PassivHaus. Show all posts
Showing posts with label PassivHaus. Show all posts

Friday, 28 March 2014

Variance Approved and Website Launched!

Wow, a lot has happened since my last update. 

For starters, we have moved.  You can read about the first few days of the move over on my journal at theEnclosure.ca It was a tiring and stressful time that I am very happy is behind me. Of course this was followed up by a week of sickness and a computer data loss that was the worst I have had ever experienced but fortunately I have been very lucky in this regard and so this was not crippling for me (just expensive - the whole affair cost over $1000 for data retrieval and the purchase of a second battery backup so both my Raid servers are protected).

The next piece of big news is that our Development Variance permit was approved last Monday night.  This was such a relieve after months of back and forth with the District.  They accepted my originally proposed upper to lower floor ratio of 87% (vs. the 75% required by the bylaw), but I had to redesign the roof so that I could lower it 12" and now only be 8" above the requirement of 26'.  This has resulted in the loss of my air barrier design utilizing a torch on membrane, so I will have to come up with a new game plan for creating a durable and effective air barrier at the ceiling location. Ideas anyone?

We have also been approved for our Construction Mortgage and I am thankful for the hard work put in by Tetyana Thomas at the Royal Bank.  They have really stepped up compared to most banks that would not loan to an owner builder. The challenge will now be to get to the first draw.  They will not advance funds until the foundation is complete.  This will cost well over $100K to get to with all of the permit and engineering costs built into this phase. I am still not sure where this money will all come from and we are going to need to do some MacGyving to get through this stage.  The ironic part is that they are then willing to advance 40% of the land value at the first draw which is ALL of the funds I will need to finish the project.  The appraised value for the finished structure is over $2M in today's market and they felt I should be spending over $800K to build.  I expect to spend less than half this due to my own sweat equity, salvaged materials, sponsorship, and a lower importance that both my wife and I share towards the 'lipstick' of a house.

Yesterday, I also received the final sealed drawings from the Structural Engineer and the GeoTech report.  This is the last part of the puzzle needed to apply for the Building Permit which I will do next week. Unfortunately the first appointment available was Thursday as I will be at a THERM training course all day Monday and Tuesday.

The gas/storm/sani/water services should all be disconnected next week and I will have Hydro swing the electrical service over to the new temp pole as soon as I finish installing it and call for inspection.  I hope to get this done this weekend.

But the greatest achievement was the launch of the project's website theEnclosure.ca I cannot thank Honeycomb Creative enough for their work on this site.  It is first rate just like all of the other work they have done for me.  I invite you to stop by and browse through the information that is available including a full copy of the plans, building assembly descriptions, and lets not forget the 'live' (actually snapshots updating every 3-5 seconds) video of the build site.

As I get caught up, I will post more information on the Varriance process for those that may need to go through a similar process.

As always, thanks for stopping by!


Friday, 18 October 2013

Determining Lifespan - Updated to 50+ yrs

Back in June (previous post), I wrote about the need to determine the probable lifespan of a building in order to determine the backpack for energy efficiency upgrades and determining the embodied energy of the dwelling.

I wrote that unfortunately, I suspected that the life span for my new dwelling could be as little as 20 years and that I would use 25 years as my expected horizon.

Well I am pleased to advise that I have now significantly extended the time line based on conversations I have had with the outgoing and new District planners for my area.  The following factors weighed in on the discusion:

  • The neighbourhood has limited vehicle access with two 'exits' for approximately 700 homes and as such would not be suitable for densification.
  • The current owners in the neighborhood are VERY active and vocal and would not support the addition of multifamily into the neighbourhood.
  • District is considering allowing for Lane Way and Carriage houses for our neighbourhood instead.
  • The real estate values in our neighbourhood are just too high (lots start at $800K and quickly climb.  My lot, at just over 10K sqft, is assessed at over $1M for just the dirt).
So it appears I may have underestimated the 'bastion' mentality and reality of my neighbourhood, and it is going to stay pretty much as it is now for some time to come. I actually welcome this news, as it was a bit disheartening thinking the dwelling may be torn down in aas little as 20 years.

Is this revised time line going to change the way I build? Probably not, the reality is that determining the sweet spot for say insulation levels, requires modelling that I just do not have the experience, time, or money to do right now.  I am instead, going to go with my gut based on research I have done over the last 1-5 years, and on recommendations done by bodies like Building Science Corp.  Once the house is built, and I am able to determine energy use by actual consumption, and learn to use various modelling programs, I will then crunch the number and report back at how close I got to the sweet spot (the sweet spot for me is when the cost of adding site energy generation is cheaper than further reducing energy use).

Stay tuned!



Sunday, 1 September 2013

The Enclosure - Updated Exterior

I thought it might be time to provide an updated design photo showing the exterior of the dwelling as it is now modelled.  I will use the through cavity window sill and head flashing to create borders around the windows (and doors).  The infill will probably be simulated stucco cementitious panels.



Friday, 26 July 2013

Cooking with gas? You may have air quality that would be ilegal if found outside! (Updated)

Energy Department’s Lawrence Berkeley National Laboratory finds that "interior air quality in homes that cook with a gas stove can reach pollutant levels that would be illegal if found outdoors."

Full Article

Contaminates include nitrogen dioxide, formaldehyde, and carbon monoxide.


The article also touches on range hood effectiveness:

"Previous studies have found that range hoods vary widely in their effectiveness at removing pollutants. In a laboratory study of seven models ranging from $40 to $650, Singer found capture efficiencies ranging from 15 to 98 percent, and also found that a higher price did not guarantee better performance."

*** Update
A more complete new release published by the Berkeley Lab can be found here.
formaldehyde
gas stove can reach pollutant levels that would be illegal if found outdoors - See more at: http://ieconnections.com/studies-find-cooking-with-gas-is-major-contributor-to-poor-iaq-p217-90.htm?sthash.MQISJNOV.mjjo&goback=%2Egde_148546_member_261072818#sthash.MQISJNOV.m1pWD1Hg.dpuf
gas stove can reach pollutant levels that would be illegal if found outdoors - See more at: http://ieconnections.com/studies-find-cooking-with-gas-is-major-contributor-to-poor-iaq-p217-90.htm?sthash.MQISJNOV.mjjo&goback=%2Egde_148546_member_261072818#sthash.MQISJNOV.m1pWD1Hg.dpuf
gas stove can reach pollutant levels that would be illegal if found outdoors - See more at: http://ieconnections.com/studies-find-cooking-with-gas-is-major-contributor-to-poor-iaq-p217-90.htm?sthash.MQISJNOV.mjjo&goback=%2Egde_148546_member_261072818#sthash.MQISJNOV.m1pWD1Hg.dpuf

Saturday, 6 July 2013

Geothermal and Liquid Thorium Reactors - Two possible answers to Fossil Fuels.

Just a quick note regarding two promising alternative sources for generating clean energy.

The first was spurred on by a Knowledge Network documentary I watched this evening on Enhanced Geothermal Systems (EGS).  This is a process being develop to bring Geothermal potential to regions of the world that do not have easy access to hot rock, water reservoirs, and fracturing of the hot rock to allow harvesting of the steam (currently only accompanying about 10% of the earths surface and may be expandable to 60-80% utilizing EGS).  The process involves creating the underground water reservoir in areas that have dry hot rocks and using techniques from the natural gas industry to fracture the rock after creating a 'man made' water reservoir over a hot rock location (rock in close proximity to Magma).  The result is the same super-heated steam available in true geothermal regions.  The documentary also covers research into new drilling techniques that use flame jet instead of a drill bit to drill through solid granite up to 10X the speed of conventional drilling.

This is a National Geographic production and I was unable to find an official source for the video but did find this YouTube video in English with Portuguese subtitles.

The second potential energy source is new way to create nuclear power.  Nuclear power has created a huge divide between those that support it and those that do not.   On the one hand it can create almost limitless volumes of energy with relatively low emissions.  The catch however is the technology utilized throughout the world is very inefficient (3-5% of the energy is utilized in the fuel rods before they become waste) and this leaves behind spent fuel with a very high radio active content and in huge volumes.  The real drawback is that this waste has a half life in the several hundred of thousands of years.  The final concern, propelled to the forefront after the devastating Japan earthquake in 2011, is that current technology is very hard to stop once it gets going.  The Fukushima nuclear plant will take decades to cool down the cores of the three stricken reactors and decommission the plants (it is taking 3000 people daily to keep the reactors cool, 2 years after the explosions).

But what if another technology existed that would burn the fuel to much higher efficiency,  would created a fraction of the waste volume, the waste would have a half life in the hundreds of years instead of hundreds of thousands of years,  and the fusion process could be shut down almost instantaneously and without human intervention in case of an emergency?  Liquid Fuel Thorium Reactors (LFTR) promise just that. This reprint from the American Scientist is a great introduction to the technology and the missed opportunities that we have had.  It also outlines some of the challenges to switching technologies in the future (mostly political).

Some benifits to LFTR:
  • liquid fluoride salts are impervious to radiation damage eliminating the shutdowns needed to change out traditional fuel rods every 18 months.
  • It is much cheaper to fabricate the fuel
  • Because the liquid fuel does not break down due to thermal cycling and radiation, it can stay in service until a much higher percentage of the fuel if burned up
  • Fission poisons like Xenon (materials that absorb electrons reducing the output of the fission process) are easy to remove from liquid fuel because the bubble to the surface. Other unwanted materials are easily removed from liquid fuel by fluorination or plating techniques, greatly prolonging the viability and efficiency of the liquid fuel.
  • Wastes created byLFTR only need a few hundred years of isolated stroage vrs a few hundred thousand years for sold fuel rods.
  • The liquid salt coolant in a Salt Nuke is not under pressure (reduces the cost by not requiring a pressure containment building)
  • A Salt Nuke can be designed to auto extinguish during any calamity that causes a power failure.  Once a frozen salt plug melts, the core would dump into a sub-critical catch basin.

Wednesday, 3 July 2013

Light House completes Pilot Project on Deconstruction

Light House Sustainable Building Centre Society completes pilot project analyzing the costs and time needed to deconstruct part of a single family residence before renovation.

Their report, published here, indicates there are some savings to be realized under some conditions, but that we have a long way to go before this can be common place.

As my time is 'free', I plan to spend up to a month deconstructing my house before starting construction on my upcoming build.  The items I plan to reuse, sell, salvage, give away, and recycle include:

  • Studs and joists - Reuse/Donate/Recycle (They can be ground up and added as a soil conditioner - Clearview Grinding Ltd).
  • Plywood - Reuse/Donate
  • Ship lap - Recycle
  • Shingles - Recycle (http://www.gemacosales.com)
  • Exterior Concrete bricks - Reuse/Sell/Donate
  • Cedar Siding - plane down to remove paint to reuse and sell.  The stuff is 1.75" at the narrow end.
  • Wiring, metal piping, bathtub and sinks - Salvage (will need to strip insulation of wiring for best prices, a job that will be left till after construction).
  • Drywall - Recycle
  • Light & Plumbing Fixtures - Reuse/Donate
  • Plastic Piping and other plastic products - Recycle (www.pacificmobiledepots.com takes any plastics that cannot go into the curb side blue box)
  • Solid Wood flooring Reuse/Sell/Donate
  • Bath and Kitchen Cabinets - Reuse (Shop)/Donate
  • Stove and Dishwasher - Recycle (they are both beyond there service life and are being babied to last this last year)
  • Fridge - ReUse (we just bought it a few years ago)
  • Aluminum window frames - Salvage
  • Window blinds/Shower Door/Boiler - Donate
  • HWT - Reuse or dontate
  • Laundry appliances - Reuse for while then donate
  • Electrical Panel - Reuse as sub-panel (newer 200A panel)

Stuff that will probably go to the landfill:
  • Interior and Exterior Doors
  • Single Pane Glass
  • Painted Wood
  • Insulation (very old mineral wool and some fibreglass)
  • Counter tops (laminate)
  • Ceiling tiles (may be hazardous)
The last item is the concrete slab.  I would like to have it ground up and be able to use it as additional granular material for back-filling but at the very least I will find a place where it is needed as fill.

As you can see, my plans are ambitions and if successful, I would  divert over 90% by weight or volume away from the typical landfill process. Some of the effort like stripping the wiring or the paint of the siding will have to wait till after the build process. But with some planning and a little hard work, this should all be easily achievable, bring in some income or good karma and significally lower the carbon output of my demolition process.

Thanks for reading and as always, I encourage your comments.
 



Thursday, 13 June 2013

Do energy targets of Passivhaus make sense and will they pay back during the lifespan of the dwelling?

I have been discussing the payback periods of Über high levels of insulation and high R value windows on LinkedIn and thought I would share my thoughts with you and possibly promote a discussion.  My comments on LinkedIn started after one participant wrote “PS: BTW, why are we talking about this in the PH forum? Aren't we all allergic to any heating other than auxiliary heaters?”.  This was a topic asking for advice on whether it made more sense to install an Air Source Heat Pump or a High Efficiency Furnace on a home that currently had an oil furnace at the end of its service life.  The dwelling of concern was not a Passivhaus, but the poster felt that the expertise of the Canadian Passive House Institute forum may be beneficial to his decision.

I commented that I felt the jury was still out on the need for a heating system in a Passivhaus design for our climate, and that in most examples I have reviewed the only way it has ‘worked’ to not have a ‘real’ heating system (many designs incorporate a hydronic or electrical resistive heating coil in the dwellings ventilation air ducts to provide ‘auxiliary’ heat), is when the occupants were willing to accept significantly lower temperatures (<+ 65°F) during cold days and nights, which is just not going to be acceptable for most occupants in North America.  But the PH Program uses the claim that a normal heating plant is not needed as a way to justify spending the extra money on extreme amounts of insulation, which in many regions will never have a reasonable chance of payback throughout the life span of the dwelling.

If you accept that some form of heating plant will be required, but through increased insulation and better windows, that plant can be substantially downside, logic would say that the smaller plant will save you money and allow for the extra expense on the insulation and windows needed to reduce your heat load and downsize your equipment.  See the circle hear.  Well logic unfortunately has nothing to do with the pricing of consumer goods.  Pricing has nothing to do with the actual cost to make an item and everything to do with how badly does the consumer want it and what are they willing to pay.  Because the average North American consumer lives in a McMansion and has a bajillion gigawatt heating plant, there is very little demand for small 10-15K BTU units that are needed in a very energy efficient home.  The result is that they cost a lot MORE than the much larger units installed in the ‘average’ homes.  So not only are you spending a lot more money on windows and insulation, you now have to triple your HVAC budget even though you are getting less.

Another poster then suggested reducing the heating load by first “renovating to Passive House-Retrofit standard with R60 Wall, R90 Roof and R50 under-slab insulation, replacing your windows with R19 Ecoglass and PH doors”.

How long of a payback is and will be acceptable to most homeowners/buyers? Does R50/60/90 (slab/wall/roof) EVER make sense in the vast majority of climates around the globe? Are windows really able to reach a R20 thermal efficiency for the total assembly?

This then lead to a new discussion topic about windows, the claims by window manufacturers (in this case EcoGlass claiming a R20 window), and the general payback metrics of the Passivhaus program and what makes sense. 

In my travels I have generally been exposed to three trains of thought when discussing the Passivhaus program; those that have drank the full pitcher of Cool-Aid and take everything at face value and run with it, those that completely dismiss the program’s claims (these tend to be people who do not believe in Global Warming or the need to reduce energy use or our carbon footprint) and often call the practitioners of the program charlatans, and finally those that can see the value in a program like Passivhaus and see the building science wisdom in many of the program’s concepts but also feel the program may go too far down the energy reduction path.

I fall squarely into the last category.   I believe we are having a detrimental effect on the environment and need to make changes in how we build and live.  Yes I plan to build a ‘close to PH’ dwelling.  I believe that PH has the right focus when designing a dwelling, unlike LEED/Built Green/or other ‘green flavours’ of the year, that are more focused on the small to minor contributions that reduce the carbon footprint, and not ensuring the elephants in the room like heat load and thermal bridging are first looked after.  How many times have we seen a LEED Platinum building with 60-80% glazing and wondered how could that building possible be energy efficient and good for the environment? 

Building a dwelling that has reduced thermal load achieved by increased insulation, reduced thermal bridging, increased air tightness, reduced window glazing with the glazing present having higher insulating value or better solar gain harvesting, utilizing south solar gain when available, and of course correct ventilation (all the fundamental building stones of the Passivhaus system) just makes sense from a building science and energy reduction point of view. 

And concentrating on your insulation and air tightness as the first and highest priorities also makes common sense, because you will most likely never get another chance to address these components during the life of that dwelling due to their inaccessibility.   So it makes sense to concentrate more of the available funds to maximizing the efficiency of these soon to be inaccessible components and calculating the optimal insulation levels based on a full life of the building cycle (20, 30, 50, 100 years?).  Components like windows and heating plants are far less important to optimize during the initial construction, when working with a limited budget (a reality for all except a select few), because both will need to be, and most importantly can easily be, replaced or upgraded in 15-20 years at the end of their service life.

But I agree with many, that the PH program goes far too far up the pendulum in its goal to reduce the energy load on a dwelling, to a point of drastically diminishing returns that are not acceptable or practical for most in North America and in my view, may actually be increasing the building’s footprint on this planet (incorporating embodied energy in a dwelling that will never be offset with energy savings).

I also feel that so often the costs to build to PH standards are grossly misstated.  I often see figures of +10% to +20% as the premium to build to the standard.  In reality it is usually at LEAST 2 – 2.5 times the cost of a house built to building code minimums.  I have seen several examples of houses built in cities in my region for under $100/sqft over the last year or two (for a 3500 – 4000 sq ft dwelling).  These are house designs that do not utilize an architect or building envelope engineer on the team, and often have only minimal structural engineering input because they are generally optimized to meet the BC Building Code’s Part 9 prescriptive rules.  They still have fancy kitchens with gas stoves and granite countertops, a gas furnace or boiler, crown mouldings, and fancy paint schemes. They however usually incorporate PVC or vinyl windows of dubious quality (R2 max and air leaky like a sieve), code min insulation levels, and no air tightness to speak of.  The types of houses build by a majority of developers/builders in the majority of cities in my region (The only City’s that buck that trend in my area are the west side of Vancouver and North and West Vancouver).   A PH on the other hand requires the use of all the specialists (for one, because no Municipal inspector is going to take responsibility for the design and you have to have an engineer sign off on every aspect of the design).  Now you are looking at $200+ per sq ft to build minimum and that is if all the rest is par with a code min dwelling.  But clients who entertain a PH typically also still want all the bells and whistles including custom cabinets, media rooms, and home automation, and so on with the costs quickly escalating to $350/built sq ft or higher.  I am often directed to the stats for countries like Germany where a PH represents at least 25% or more of all new house builds.  There is a very good reason; a builder gets a huge government grant to build to the standard, the size of the grant reportedly offsets that bulk of the added expense to build to the program.

My final concern about the program is that it is not even possible in so many locations.  In order to meet the energy targets and not have a requirement for insane levels of insulation, a Passivhaus relies on solar heat gain (SHGC) to provide a large portion of your heat during the sunny winter days and shoulder month seasons.  This is obviously only possible if you have an unobstructed view of the sun (and of course have Sun) on your south elevation.  In an urban environment, this probably represents less than 10% of the available build opportunities which make the program quite elitist and limited in its ability to apply on mass.
 
I value the work that the Passivhaus community has done around the world and applaud there tenacity for building quality homes. I however personally would much rather see the energy use requirements lowered 20-30% and applied on mass to all new construction by means of building code requirements.  Only then will we truly make a difference in the carbon emissions and fossil fuel outputs of our society and substantially reduce our dependence on fossil fuels in North America.  Fortunately, I live in a Province that is leading Canada if not North America down this path with its new requirements for ever increasing insulation, ensuring for the first time that doors and skylights have to meet the same minimum air tightness requirements as windows, and hopefully really soon, will require an air tightness demonstration that meets a minimum level at the end of construction.

As always, thanks for reading and I look forward to your comments.

Determining the Lifespan of a Dwelling

In order to determine the payback of the various design decisions needed in a new build (or even a renovation), you need to first determine the most likely lifespan of the dwelling you are designing.  Many Europeans would say a home should be around for hundreds of years because many of theirs have been. 

How is this possible? 

Most are built with brick or stone and are in OLD cities.  How old?  Well the Romans were around when many of them were in their infancy. 

Why is the age (maturity) of a city important? 

To answer that we need to look, in contrast, to cities like Vancouver and its surrounding neighbours which are all very young in comparison and changing rapidly.  Single family dwellings on small parcels of land still represent the majority of the housing built and available (when looking at land use and not just total numbers of dwelling units).  As such there is a huge potential for redevelopment as the city matures and grows. 

I live in a large single family neighbourhood 10 minutes from downtown Vancouver.  North Vancouver has predominately been a single family neighbourhood since the early 1900’s.  But it is rapidly changing (many would say for the worse due to the traffic congestion that has developed and really does not have an easy cure due to the geographical challenges of the region).  The District and the City of North Vancouver are both looking to and have been dramatically increasing density in our region with the misguided goal that doing so will make accommodation in our cities affordable.  This has been attempted over and over again in Vancouver, and the facts are that these high density ‘villages’ become sought-after-hot-spots that have some of the highest rental and real estate values in the country if not all North America.  Cole Harbour comes to mind.

I digress, why is the age or maturity of a city important? 

Well, the fast growth of urban areas in my region dramatically shortens the life span of what I feel will be the soon defunct urban single family dwelling.  While my current house was built in 1954 and has had a good run until now, I highly doubt that the house I plan to build next year on this property will come even close to 60 years before it is torn down to make way for a low to mid-rise multi-family housing.  In fact, I would be surprised if it was still around in 25 years.  With its proximity to the Down Town core, Lions Gate Bridge, and Upper Levels highway, it is prime land for re-development; development that is already underway at several nearby locations.  A single family neighbourhood less than 5 minutes from me is slated to become the new Lower Capilano Village.  Another single family neighbourhood within 7 minutes drive has now been bulldozed and is slated to become part of the Lower Lynn Town Centre.

The point I am making, is that it is unreasonable to expect that a single family dwelling built today will still be around in 50, 30, or even 20 years in many neighbourhoods in growing urban centres.  Like the cities that have a much longer lineage than those in North America, there will be a forced march to densification and an abandonment of the single family home on a small distinct plot of land.  Does it therefore make sense to model a home that would have a 50, or worse, 100 year payback in energy savings or carbon reduction in these types of neighbourhoods?  Before coming anywhere close to cancelling out the costs to build or embodied energy of the dwelling, it would be torn down and end up in a land fill. 

So often logic is not part of our design decision making process.  We want something so badly that we will fabricate a way to make that decision sensible.  Designing a home that is SO energy efficiency that it would take 50 or more years to pay back may not actually be helping the planet if that dwelling is only around 20 years.  I hope that more discussions like these will encourage a greater uptake on what makes sense in the larger picture, and start allowing informed well thought out designs that are defensible.

For my part, I believe it will be sensible to apply a 25 year life span when calculating the break even point on the various design decisions I have ahead of me.  If the dwelling is torn down earlier, I will not have left too much on the table, and if it has a longer run, the payback will have already occurred and it will then be providing dividends in carbon reduction and utility bill savings.


As always, thanks for reading and please let me know your thoughts.

Tuesday, 1 January 2013

Happy New Year!

Just wanted to wish you all Happy New Year out there in Webland.

I wish you Health, Happiness, and Prosperity for 2013!

Thanks for reading and making this blog such a success. It should be an exciting year with all engines ahead full on my upcoming build.

I wanted to leave you with my current two favourite quotes by Dr. John Straube:

When discussing the importance of envelope barrier components and their order in the assembly at recent seminar he stated; "You can pick your teeth, nose, and [butt], obviously the order you do so is very important!"

At a recent Building Science Experts’ Session it is reported that he stated; "Recirculating range hoods don't solve the IAQ problem. It's like a recirculating toilet, the stuff just goes round and round and never leaves."



Sunday, 30 December 2012

Barriers to 'Green' - Ignorance?

Marc Stoiber recently sat down with Jim Nelson - Senior Marketing Manager at BC Hydro, and extracted Jim's list of seven psychological barriers to the general public accepting and embracing 'green' (Full interview).

But I believe there may be another even bigger barrier, that Jim has missed, and that is ignorance.  I do not mean this in a negative way, but a true definition of the word way.  You see, I consider myself fairly well informed on many energy efficiency issues and I definitely want to do the 'right' thing, even if it costs me a little extra in the short term.

But what is the 'right' thing?

I presently do not have enough knowledge to make that decision and I believe that many people would be in a similar or even worse situation. I have spent a LOT of time researching my upcoming build.  I have literally spent hundreds if not thousands of hours over several years researching the best practices of building envelopes, HVAC, electrical efficiency, etc.  But in many ways, I am no closer now to being able to make the 'right' decisions than when I started.  There is so much information available these days thanks to the internet and search engines like Google.  Answers are literally a few clicks away, but unfortunately much of these answers are conflicting depending on the bias or knowledge of the presenter.  You are often unable to determine the best course of action.


This has often left me felling frustrated and can paralyze you from moving forward.  An example is needed:

Over the last few days there has been a discussion on Linked-In asking about the sanity of using electric resistance baseboard heaters (Full Discussion - Building Science Group: Have we lost our minds when we use resistance heating in low load buildings?)  I have been actively participating in this conversation because I though I could provide knowledgeable responses. But in the end, my assumptions were challenged leaving me wondering where I stood and feeling quite ignorant on the subject.

The basic premise I first had was based on the fact that I live in a region blessed with abundant clean energy, that being Hydro Electric.  Currently, 90% of our Province's power comes from Hydro Electric generation with the balance being made up with Natural Gas fired Thermal (7.5%) and the rest is purchased energy (much of it from Alberta's coal generation with a smattering of renewable like wind).  My logic was that I should utilize this 'green' energy in my upcoming build in order to reduce my carbon contribution to the planet.  I would look at an air source heat pump ASHP (utilizes electricity to harvest free 'heat' from the air outside your home much in the same way as your refrigerator works to evacuate heat from its interior - just in reverse).  I would use the heated refrigerant created by the ASHP to heat water (through the use of a heat exchanger) that would then be circulated through radiant panels I would place in my walls and ceilings (I will discuss why I will not do radiant floors in a future blog).  In the summer time, I would reverse the heat pump and created chilled water that I could then use to help cool the home.

Many models of ASHP are available, but efficiencies as high as 4+ are available (meaning for every unit of electricity used, there will be 4 units of heat available).  This sounds pretty good, doesn't it.  But we are not done yet, we also have to take into account the source losses for the energy used and reduce our efficiency accordingly.

In a conversation I had with Dr. John Straube of Building Science Canada last winter, he suggested that an appropriate way to look at electricity generation may be to look at all of the generation sources feeding your particular electrical interconnection.  I am part of the Western Electric Coordinating Council (WECC) interconnect  which does have a lot of hydro electric generation, but is also supplemented by dirtier generation sources like coal. He suggested a source energy factor of 1.5 to 1.7 may be appropriate (for every kWh consumed at site, 1.5 to 1.7 kWh must be generated.  The .5 to .7 lost kWh's represents transmission losses and generation inefficiencies).  So a ASHP efficiency of 4 now drops to 2.35 - 2.67 when taking into account the source energy factor. Not as good but still at least 235% efficient.

What are the alternatives?  For me, the logical alternative would be a high-efficiency-modulating-condensing-natural gas fired boiler.  These type of units can have a site energy efficiency of 95%+ which translates into a source efficiency around 90% when adding in a 1.05% source energy factor (yes there are also 'transmission' losses - venting and pumping - in gas pipelines that account for most of the 5% loss).  This is starting to look a lot less attractive.  We have 90% efficient gas compared to 235%+ efficient electricity, and this formed the basis of my preliminary decision to not even re-connect the gas line up to my upcoming build.

Now the original Linked-in conversation was considering the use of electric resistance baseboard heaters.  These are considered to have a 100% site efficiency which would translate into a 66% down to 59% source efficiency when taking into account the source energy factor of my region.  This is poor in comparison with even the Natural Gas fired boiler efficiency.  I would never consider such a heating source UNLESS the heating load was so low, due to the envelope efficiency, that electric resistance baseboards or radiant panels were the only heat source that could ramp down low enough to not overheat the dwelling.  This can often be the case in dwellings that have extreme levels of insulation like those certified in the PassiveHaus program.  These homes, by virtue of their certification, must have heating loads not exceeding 10W per square meter of living space.  Unless the dwelling is quite large, this low of a load is often exceeded even by the smallest equipment currently available on the marketplace. Unfortunately, electric resistance baseboards are common in my region for some single family houses and abundant in multi-family housing.

On the surface, the decision looks easy - choose the 235% minimum efficient ASHP and that was were I stood a day ago.  But I was then challenged by individuals in the discussion to visualize a larger picture.  As mentioned I live in BC which has an abundance of hydro.  My interconnect also has a high ratio of Hydro arguably giving it a source energy factor around 1.5 to 1.7.  The rest of the USA in comparison is dirty, to just plain filthy, due to its heavy dependence on coal fired power plants.  The average source energy factor for the USA is around 3.3 meaning for every unit of electric energy used in the home, 3.3 units of energy have to be created and added to the grid.  This would bring our ASHP example down to a efficiency of 1.2 or 120%. Still better than gas but a lot worse than the average for my region.  An electric baseboard on average in the USA would only have a efficiency of 30% when the source factor is taken into account - clearly a poor choice!

On the surface, no regions should use electric baseboards (unless the loads are VERY low) and in all regions, an efficient ASHP would be a better choice than even the most efficient gas boiler or forced air furnace.  Again, the decision seems clear - right?? 

But what happens when a person in a region with 'green' hydro energy decides to use a gas fired heating system to reduce their electrical usage to allow more of that 'green' electricity to feed into the grid, and by doing so, hope to reduce the ratio of filthy coal power?

Does anyone benefit?  Will the extra kWh's made available offset coal production or will the power just be consumed by increased demand of a non-energy conserving nation?  How does one predict the actions of a consumer?  How does one measure the result of such a decision?  Should one use a 'green' electricity themselves, or use a dirtier energy so that they can pass on their clean power to users that only have filthy electricity available?

What is the right answer???  This is just one example of how difficult the right answer may be to obtain.  An ignorance of the needed facts to make the right decision can paralyze a person from making any decision, which in turn could often lead to the adoption of the status quo (one of the barriers mentioned by Jim Nelson).

Now of course, I do not have this as an option.  I must put some form of heating system into my planed build.  To this end, I would appreciate input from those with relevant knowledge, that could help provide the information I need to make this decision.




 


Thursday, 20 December 2012

May I present "The Enclosure"!

Well the days are ticking down and the stress level is rising, but I finally have a finished floor plan and reasonably advanced 3D model I can share with you. These are exciting times!

I have decided to call the project "The Enclosure" (sorry, no one won the $50 prize) to reflect my focus while designing.

I will use this blog and a new website that will launch in the months to come (www.TheEnclosure.ca) to promote what I feel are good decisions that encompass the below 9 guidelines. I also hope to include hourly construction photos during the entire build, live camera feed from two angles, manufacture’s technical information on the products I choose, and most important, real life figures as to cost and performance of the built dwelling, on this new website.

I hope to work with the utilities to provide live monitoring of site used energy and will also approach groups like HPO, BCIT, and the Building Envelope Engineering sector to design laboratory experiments that will provide real feedback, from the site, on the effectiveness and durability of different wall assembly structures.

To that end, I will design a 8ft high x 8ft long ‘opening’ on the north-top-floor-exterior-wall that will allow the installation of multiple ‘plug and play’ wall assemblies with instrumentation. This will allow the recording of wood moisture, relative humidity, temperatures, and heat flux through the various assemblies over time. The results, I hope, will allow calibration of computer models and determination by building officials as to appropriate assemblies to support in code changes for decades to come.

The instrument readings, I hope, would also be made available live on my website. In this way, the dwelling could have a real contribution to the scientific community and would help my goal of creating a legacy instead of a liability.

Now, if you read some of my earlier entries, you will see that this process started for me back in 1981 when I took my first drafting course in high school. Some of the concepts represented in a design I worked on through high school are still incorporated in my modern day design. Items like a low slopped roof, vaulted ceiling above the stairs and bedrooms, 'light wells', a ‘great room’, and a shop in the basement.

Other concepts are much more recent, like optimizing the floor space to be as compact as possible, incorporating SAFERhomes standards, generally following the principles of PassiveHaus, and most importantly - putting the building enclose much higher in the priorities list (with the larger portion of the budget to match).

I believe that in order to truly build a sustainable dwelling, you must follow these basic, but powerful, principles (placed in the order I believe is the most important) when laying out your design:


1) Build what society is probably going to want in terms of functionality for the upcoming decades (no sense building a small 750 square foot bungalow with 1 bedroom, that is just big enough for you, if as soon as you no longer choose to live there, it will be torn down).
2) Build as compact a floor plan as possible - Optimize your space and make only as large as needed. This does not mean that you have to feel cramped, just decide that having that 300 ft2 'master bath’, with room for a dining table in the middle of the floor, is probably not the best use of space (ours is only 118 ft2 and includes storage).
3) Limit the volume of the envelope by limiting the number of jogs in your wall design. This will reduce your overall heat loss and material use/cost. It will also make the dwelling a lot easier and cheaper to design and build in light of the new seismic requirements in British Columbia.
4) Build out of durable products that are appropriate for their intended purpose. Do not choose a ‘green’ product that does not last or protect the structure to an adequate level just because of its perceived "greenness".
5) Within the range of products available for each build element, chose ones with as little embodied energy as possible and that use as much renewable materials as possible (my focus will be to avoid as many oil based products possible).
6) Concentrate on energy reduction over site energy creation. This automatically dictates abiding by #2 and #3 above. It also dictates concentrating on the wall, roof, and floor slab assembly’s ability to resist thermal, water, and vapour flow over HVAC ‘conditioning. And in order to achieve your enclosure performance goals, you are going to have to ensure it gets a much larger slice of the budget pie, but you will be rewarded with smaller HVAC equipment sizing needs and reduced energy bills for decades to come.
7) Build Tight and Ventilate Right! YOU should decide where the ventilation air is coming from and not just leave it to chance. This gives you the opportunity to filter the air of pollen and other contaminates, and also to pre-warm/cool the air with stale air being exhausted from the dwelling. The controlled air exchange also keeps it out of the wall and roof assemblies where it can condense and ruin your day.
8) Size any required HVAC equipment to meet your reduced thermal loss or gain needs (remember parts of the continent actually need air conditioning). Oversized HVAC equipment is prevalent in the building industry, a practice that can often result in short run cycles that limit the equipment's ability to run efficiently and rid the dwelling of harmful pollutants or humidity.
9) Do everything possible to keep your partner happy in their design wishes. Yes this is still important, just at the bottom of the list and only accommodated up to the budgets constraints. So once you have paid for good windows, lots of insulation, and durable renewable products, there may not be a lot of money left for flashy but less useful features (from a future cost savings point of view), like granite counter tops in the washrooms, $50 a square foot Italian tile, $1000 shower heads (yes they exist), $30K kitchen cabinets, and the list goes on.

I will go into some of the design decisions with a lot more detail in future posting, but wanted to give you a quick overview of the design to date and some of the outstanding decisions and design tasks.

Tasks still to complete:

• Floor Truss Design
• Roof Truss Design
• Final Thermal Resistance Layer thicknesses for walls and roof assemblies.
• Window quality and U Values
• PHPP model to predict heating needs (PassiveHaus)
• Engineering of suspended garage slab
• ‘Approval’ of enclosure assemblies by my contacts in the building envelope community
• Plumbing Plan
• Electrical Plan
• HVAC equipment sizing and design (including choosing heating method – Forced Air/Hydronic/Air Source Heat Pump)
• Home Automation and low voltage design
• Site Survey
• Final Cladding design
• Final ceiling height decisions
• Layout drawings
• Permit Document Package
• Variance Application (for floor ratio*)

* My neighbourhood has its own zoning bylaw which has a requirement that upper floors can only be up to 75% of the main floor size. I am unsure of the purpose for this requirement, but it is at odds with keeping a dwelling as compact as possible (most efficient shape is a perfect square), and also runs against the new seismic requirements.

I will be asking for a relaxation of this requirement. I have made the upper floor as small as possible, but still fit in the desired 4 bedrooms and 2 bathrooms. The main floor I have also made as small as practical/desired to fit the rooms and functionality desired. This amounted to a split between the floors that is closer to an 85% ratio. I am trusting that the Municipal building department will concede to this logic and agree that this is an archaic requirement unfitting for our goal of an increasingly energy efficient building stock.

Design and Floor Plan Illustrations

Figure 1 NE Elevation


  • You will see that the north wall is almost featureless. I am fortunate to have the right sighting to make this work as I have an equally un-featured wall on the house about 15ft to the north of me. This will also support the plug and play wall ‘lab’ modules I hope to have sponsored by the building science community.
  • You will also see that except for the cut-out around the garage, the dwelling is relatively square and uses roof lines to create interest instead of multiple wall jogs. This reduces the overall envelope volume which reduces cost and most importantly – heat loss. 
  • There is a full basement but no windows and only one north side-yard door access. The basement is dedicated to utility as you will see in the floor plans below. A future owner can create light wells and convert to a living suite if desired. This was not our focus (I have dreamed of a wood shop for decades and this was the only way I was going to get it on this property, due to zoning requirement) and a suite in the dwelling would have prevented an owner-build (dwellings with suites must use licensed contractors in my region). 
Figure 2 SE Elevation

  • Generous overhangs will protect the wall penetrations from wind driven rain and on the south side will also be designed to completely shade the windows during the summer’s mid-day heat to prevent interior solar gain.
  • The foundations rise 6” above grade to allow the foundation to breath and protect the wall's wood structures from moisture related damage , but I wanted flush pedestrian access at all doors with no thresholds (to meet the SAFERhomes objectives), and so have dropped the first floor to hang off the side of the foundation on ledger boards.
  • Notice the shallower foundation below the garage. The garage will have a suspended engineered slab to allow for useful space below, but I only needed a 8ft ceiling in this space (rest of basement will have 9ft ceiling to allow for tall projects in the wood shop).
  • I still have decisions to make on the type of cladding. I am leaning to a natural stone feature wall at front and lightly stained tongue and grooved cedar cladding for the rest of the dwelling. These wood cladded areas may be broken up by cementitious panels to provide some architecture interest (say above and below windows). 

Figure 3 NW Elevation
  • Now before you all yell at me for the notch out, it is for good reason and not just ‘designed’ this way. One of the considerations when designing this house was three 125+ ft high cedars (see figure 5) on site that constrict the location and shape of the house’s outline (they have been there a lot longer than I have and have more right to the land than I). This notch is to accommodate the one cedar at the back of the house. 
  • The width of the house was further constrained by two more cedars to the south.
  • I also wanted as shallow a house as possible to preserve as much of the backyard as possible.
  • The two lookout windows on the north wall will let in some natural light and may also allow a view of the local mountains over the neighbour’s house and nearby trees. 
  • The square indicates the approximate location for the proposed lab ‘test panels’. 
Figure 4 SW Elevation

  • The low slope roofs work well with the neighbouring dwellings with the higher roof plane on the north to match that neighbours two storey home and the lower plane on the south the allow the neighbour on that side, living in a single storey dwelling (not likely to change in the decades to come), to still have some view of the mountains. 
  • The higher ratio of window glazing on the south will make good use of the solar gains that can be expected in the fall through spring, and then will be blocked out by the overhangs during the summer when the sun is high in the sky (will provide shading photos in a future blog).
  • There is a chance that the living room, kitchen, and master bedroom will overheat in the summer based on the west glazing present. We will design for the addition of movable exterior solar shading on the west wall in case of this eventuality (because interior shading is hardly ever effective – heat is already on the wrong side of the envelope).
  • The ‘look-out’ windows on top of the roof will provide natural light year round into the north side of the upper floor and solar heat gain from fall through spring.
  • Before someone yells at me for the unsafe condition shown in the above photo, I still have to design a deck that will hang off the side of the structure, and be accessed through that French door on the second floor. Fortunately, the District has already agreed that as long as this is not supported by the ground below on posts, that it will not count towards my floor space (they typically only exempt the deck area if the structure is cantilevered out from the building which of course represents huge thermal bridging). 
Figure 5 Satellite photo of lot with both neighbour's lots also shown.

  • Top of photo is North.
  • Two storey dwelling to north and single level dwelling to south.
  • Yellow square indicates build lot and outline is rough location of planned build.
  • White circles indicate location and approx. trunk size of nearby cedars. 
  • Notice a lack of shading for most of the south exposure. I will also have all 3 cedars de-limbed up to 30 ft and spiral pruned (you should never top a tree unless you are purposely consigning it to death). This will protect the roof surfaces from wind tossed branches and will provide full southern exposure to the lower fall and winter sun, but still provide great shading to about 30% of the summer days sun (9 AM through to about 11:45AM). 

Figure 6 First Floor

Design Considerations:

  • Place as much of the ‘living’ space on the south exposure as possible to capture day-time solar gain during fall to spring months. Also allows natural lighting to dominate most daytime lighting needs. On the flip side, keep as much of the utility on the north side as possible.
  • Design room layouts to provide for the natural flow of people with as little ‘intersection’ conflicts as possible.
  • Meet the needs of a home based business.
  • Allow 12ft ceiling height in garage to accommodate a hoist.
  • Open Floor Concept (makes smaller spaces look bigger and substantially reduces materials and build time). Ensure this 'open' feeling starts at the front door.
  • Isolation of bathroom from ‘Great Room’.
  • Hide stair from living area and make the most convenient for the family entrance (also ensure it took the least amount of space possible so no incorporated landings and changes in direction).
  • Accommodate the family entrance off the garage as the ‘Main Entrance’ with the most closet storage.
  • We even have some consideration to Feng Shui best practices as to best room layout, etc.
  • Door, Hall, Stairs, and all squeeze point widths to meet SAFERhomes standard.
  • Accommodate newly required seismic bands (both exterior and interior). Bands dictate location of windows and doors (interior and exterior) 
Figure 7 - Second Floor

Design Considerations:

  • All bedrooms on this floor.
  • Ensure the number of bedrooms and bathrooms were suitable for what market in area expects. This is more than needed by my wife and I, but makes the house marketable when we no longer want to be here and reduces the likelihood that it will be torn down or significantly renovated for decades to come.
  • Ensure guest bedroom is as far away from master bedroom as possible. This also holds true for the ‘TV’ room. 
  • Ensure sufficient closet space in all rooms (including bathrooms).
  • Minimize extent of hall (another area grossly out of proportion in many 'modern' dwellings).
  • Make bathrooms big enough without wasting space. 
  • Meet personal desire for more luxurious master bedroom located at the SW corner of the floor. Placing master bedroom in this location will allow that room to most benefit from solar gain in the shoulder months.
  • Ensure walls are available for required seismic bands to line up with bands below.
  • Meet my wife’s one and only requirement of a walk in closet in the master bedroom (yes I have it easy). 
Fig 8 - Basement

Design Considerations:

  • Contain all HVAC equipment.
  • Provide Laundry facility where noise will not be disturbance to occupants. Also reduces flood hazard by not having it on upper floors (Holmes would be proud!).
  • Provide space for home gym (first hurtle, actually using it is the hardest). 
  • Fulfill life long dream of a full wood shop.
  • Provide Waste Vegetable Oil fuel processing station (upcoming blog entry).
  • Provide for computer LAN vault.
  • Provide for ample storage.
  • Accommodate a Sauna.
So there you go,  we have made great progress and may actually get this off to an on-time start.  I would welcome any feedback you may have (good or bad) and look forward to providing more information in the near future.

Wednesday, 28 November 2012

The problem with architecture is architects!

Some of you who know me, know my general bias against the architectural profession.  I have built up this bias over many years for many reasons, but primarily due to the lack of respect many of their designs show to good building science.

Well today was grounds to again support this bias and I just can't keep my thoughts contained.  Against my better judgment, I attended the Sustainabuild conference in Vancouver which is geared towards the architectural community.  My draw was one of the speakers - Murray Frank - who I highly respect and was one of the only real rays of sunshine in an otherwise cloudy and stormy day.  Fortunately he provided a presentation on good science or my head would have exploded with all of the assaults to good building science presented throughout most of the day's balance.

Let me give you some examples.  I just about bit through my tongue when one of the early presenters discussed Chicago's Aqua tower shown in the photos below and advised "we can design buildings that are able to capture solar energy".. "and get rid of excess heat within the building".  

Are you kidding me? 

The Aqua tower is an abomination to all good building science practices and pretty much eliminates the ability to separate the exterior from the interior environment due to its extreme solar bridging and moisture transport by means of the extended floor slabs.  I can advise that in the heart of the summer, you still need to have the heat turned on during cloudy days (I have the unfortunate distinction of having stayed at the hotel during a recent vacation - my wife booked the place before I realized where it was).
The Aqua Tower in Chicago - Photo by your author Summer 2012
Thermograph image showing the extreme heat bridging present in this building (Notice the 20º Celsius spread in temperatures) - Photo http://www.healthyheating.com






But the tower won some awards and was designed by a women and is pursuing the LEED certification, so it must be a good thing - right?

Wiki states "Sustainability was an important factor in Aqua's design. Gang and her team refined the terrace extensions to maximize solar shading, and other sustainable features will include rainwater collection systems and energy-efficient lighting. The green roof on top of the tower base will be the largest in Chicago." 

Why not try and make the building enclosure bullet proof before worrying about small energy contributors like lights and rainwater collection. 

Green roofs have been proven many times to not be green (they often do not reduce storm runoff, make for poor performing insulation, often need to be watered to stay alive, are often poorly installed leading to leaks, and the list goes on).  The only reason for them is a visual pleasantry and no one is going to see this one being on the top of one of the tallest buildings in the area.

The same presenter then tried to advise the room, towers are less green than low rises because they use more energy per cubic meter due to the need to "pump all that water up all those floors".  A figure of 1100 units (believe it was kWh/m2/annun) was identified for the towers and a much lower figure was used in their example for low and mid rise units.  This person was advocating that we take up more land for buildings, make the buildings shorter, and that the result would be that we needed less 'green' space and parks because there would be less shading from neighbouring buildings and I guess indicates people would be more comfortable staying in their little cubby holes. 

Fortunately there was a presenter later in the day who represented the Marine Gateway project at Marine Drive and Cambie in Vancouver.  He had actual numbers from the modelling of the development which were down around 100 units which represent a very attractive target and a well run efficient building.  But what if he was not in the room.  The first presenter's assertion that towers equated to energy inefficiency would have prevailed and could have started a whole new push by the architectural community based on poor concepts using inaccurate data.

Besides Murray's presentation, the only other ray of hope in the room for me, was the fellow who presented on the Cambie Corridor densification project and specifically the Marine Gateway project.  This project appears to be a great step towards sustainable multi-family living.  There is only 50% glazing in the residential and 51% in the commercial spaces (compared to 75%-90%+ for many downtown buildings).  The presenter went on to say that the areas that are not glazed are heavily insulated.  Finally a team with their priorities straight.  Get the building envelope right and you will have a low energy and 'green' building.

An example was made early in the day that showed the lotus car and had the presenter discussing how beautiful the cars exterior was and the true marvel was how the engineers were able to fit everything that was NEEDED into that 'beautiful' shape to make that shape FUNCTIONAL.   

I see this process as being the biggest fundamental flaw with the architectural community. 

We need to abolish this process and instead first decide on our performance goals, define our building enclosure to meet those goals using good building science, and only then allow the architects into the fray to design the perceived 'beauty' into the buildings. But only up to the point that the client can afford, after committing to the performance objectives first, and only to the point that the architects design does not impend the designed enclosure that is needed to meet the performance objectives. 

Only then will our building start to become legacies instead of liabilities and truly be 'green'!

Sunday, 11 November 2012

Fall 2012 Energy Efficiency Public Review

BC has been pursuing energy conservation and greenhouse gas reduction goals in buildings for more than five years. In September 2008, the Province adopted new energy and water efficiency objectives and requirements for all buildings in the British Columbia Building Code. Since that time, staff have been working on the next steps to improve energy efficiency in buildings consistent with the goals in the Clean Energy Act (2010).

We invite your feedback on a set of proposals to adopt updated energy efficiency requirements in the British Columbia Building Code, including:
 
Large Residential, Industrial, Commercial and Institutional (Part 3) Buildings: A proposal to reference both the 2011 National Energy Code for Buildings (NECB) and ASHRAE 90.1 – 2010 as two possible compliance options in the BC Building Code.

Housing and Small Buildings (Part 9): A proposal to adopt the package of new revisions to the National Building Code relating to energy efficiency for housing and small buildings.

Ventilation (Part 9): A proposal to adopt new ventilation requirements for Part 9 housing to maintain occupant health and safety.

The proposed changes would have an impact on Part 10 in the BC Building Code. If these proposals are adopted, Part 10 would look like this.

Saturday, 27 October 2012

Alfie Lives


Well Alfie did not exactly get the life of leisure I promised him.  I immediately put him to work on my 'rock pile' in the back yard that was hidden under years of blackberry growth.

Start of job - find the rocks and dirt through the mountain of blackberries and ivy!

 A lot of rocks to screen.  This is excess soil and fill that accumulated from previous projects around the yard like the perimeter drainage, garden sprinklers, and the start of a waterfall, pond and stream.

Not exactly Kutny's Soils scale, but it worked wonderfully.


The finished screened pile (about 20 cubic yards worth) - I have a lot of stone work in my future.  Plan on a stone wall fence, stone wall raised garden beds, stone herb gardens, and a selection of stone and gravel stream bed.

But just before getting to the above finished stage, poor Alfie had to have a rest.  He had been leaking fluids before I liberated him, but the vendor had thought they had addressed the issue by flushing and cleaning the radiator.  Well the problem was a bit more terminal than that and poor Alfie required bed rest for the last 3-4 weeks while we searched for a suitable heart donor.   A suitable replacement water pump was located last Friday and Alfie went under the knife last Monday.  After 4 hours of anticipation and worry, wondering if he would or would not make it, Alfie woke up and jumped out of bed and started digging.  

After looking at the pump that was removed, we are amazed that it was still in one piece with the cracks radiating around the entire perimeter.  We are thrilled with his recovery to date but he is not out of the woods yet.  He still gets flushed after a few hours work and needs to take a break to cool down.  We will work together to get through this season and then he will go see a specialist.  We are all routing for him here at SENWI.


Saturday, 1 September 2012

Finally Re-Started



I can proudly say, as of yesterday, I have finally restarted the design process for the floor layout with an effort this time to maximize the sun’s exposure for living areas (align living areas along the south side and utilities along the north) and minimize the floor area in general in order to lower costs and also fit within the District of North Vancouver’s floor space ratios (even with my thicker walls).  In a jet-lag-induced-stupor, I broke out AutoCAD (which I use for prototyping), blew away all the walls on my previous designs and started the process over. I have done this probably a dozen times over the last 10 -12 years and it always surprises me that the ‘next’ design is often substantially different than the last design.  As my priorities and goals change, so does the layout of our home.

For instance, when I intended for this to be a retirement home, I did not worry about what would make the design ‘marketable’, but only on what we as a couple needed and wanted.  This resulted in a 2-bedroom house with lots of extras like a gym, second laundry, office & study, theatre room, etc.  Then about 5 years ago, I came to a realization (my wife also to a lesser extent) during an annual stay at a vacation rental house on Chesterman Beach in Tofino, that I really did not want to live in North Vancouver for the rest of my life.  When I moved here 13 years ago, it was a drastically different place, and I intended to ride out the remainder of my life here.  But, in my view, the North Shore has deteriorated substantially since then.  Traffic is my number one concern.  Because the Upper Levels Highway has reached capacity, a lot of traffic now spills onto Marine Drive and through residential areas.  In my neighbourhood (which has not seen ANY increase in the density of homes), the flow of traffic at a nearby intersection has gone from 2400 vehicles a day in 2008 to over 5000 vehicles a day last March (this increase is generally vehicles cutting through the neighbourhood between the Upper Levels Highway and Marine Drive).  Marine Drive has now become choked for a large portion of the day and it can often take 15+ minutes to get to a nearby mall during the day (10 blocks) when the same trip at night only takes three minutes.  And now the District is supporting heavily increased densities along Marine Drive without any meaningful plan to address the traffic.  Until and unless the North Shore Communities demand that the Province upgrades the highway and bridges, the problem will only get worse.

But I digress. That is a conversation for a totally different blog.  The point is, I do not see that this will be a pleasant place to live for decades (if ever), and so the emphasis of my design will now be marketability as opposed to personalization.  In this region that means bedrooms, the more bedrooms the better.  It does not really matter on what size the bedrooms are and many are filled up with a queen sized bed.  If I were truly building to market demands, I would also add more bathrooms.  Many homes in my neighbourhood have a bathroom attached to each bedroom.  But in my books, this is just nuts.  My generation and my parent’s generation managed just fine with only one bathroom in the house.  Yes that’s right one bathroom!  Can you imagine?

Although I will be building with marketability in mind, I still believe that builders should be providing a legacy in the structures that they provide and not a liability.  So I will be trying to provide the ‘features’ that the current buying public want, but not at the expense of the building envelope and compactness of the home.  I will talk about this and my design process more in future posts.

For now though, I would like to leave you with some thoughts I have as a resident of the North Shore on my return from a holiday to Chicago, Scotland, and London.  I feel I am further up the curve of what I consider a sustainable path through life, just by the programs in place where I live when viewed in contrast to these recently visited regions.

Let me start with Chicago.  This is a LARGE city by Canadian standards (approximately 4-5 times bigger than Greater Vancouver) and there was a lot of waste produced and a lot of traffic.  What was not visible were recycling efforts or car pool/transit lanes.  

When I talked with our drivers, they did not think anything of the traffic, and felt it was acceptable to commute through communities in order to miss the back-up on the highways.  Really???  The City is looking at adding ‘green-wash items’ like bike lanes in the core, but what about the gridlock?  Why not reward drivers who carpool and take transit by allowing those drivers/passengers an expedited path through the gridlock.  This will help solve many of your problems including road capacity (encourages denser passenger ratios), pollution (less stop and go traffic), and less cars means less damage to road structure.

As a resident of Greater Vancouver, I was also shocked at the lack of recycling generally available in the City.  For any city in any part of the world, recycling just makes common sense.  Yes there is an expense to do so, but let’s consider the savings.  The pickup costs are largely offset by the reduction in garbage pickup volume.  Reduced garbage volume means less pressure on the landfills.  Much of what is normally recycled are often items that do not readily break down in landfills and can often leach all kinds of nasties into the surrounding soil and groundwater.  By recycling them we can reclaim many of the materials in the products we throw out.  This reduces costs to remediate dumps, reduces manufacturing costs (recycled material is by its nature pre-processed and so often easier to incorporate into a manufacturing process than raw material and usually much cheaper to purchase as well), and of course recapturing raw materials puts a lot less strain on the diminishing natural resources on this planet and reduces our need for their exploitation.

Scotland also lacked any visible recycling program, and I felt horrible, throwing away plastic, paper, and glass while there.  With a total population of just over 5 million (less than Chicago) and a land mass of 30K square miles compared to Chicago’s 1487 square miles, their logistics challenges for collection is understandable.  But I am sure that the Country could come up with some innovative methods if they put their heads to it.  For me, it felt almost barbaric,  like living with an attitude that stated - Not a problem – we have LOTS of room to just dump it.

The other surprising point for me in Scotland was the food.  It was generally heavy (meat and potatoes or seafood and potatoes), and often lacked the addition of fresh vegetables.  Salads were never a standard part of the meal in most locations we visited.  One server just could not understand that we wanted vegetables with our dinner and not chips. Near the end of our trip, I remarked on this to a Chef at an Inn in Gairlock, and the son of one of our neighbour’s.  He advised that the growing season in Scotland just does not support the production of produce.  Indeed in my travels, I did not drive by even one farm, lots of fields of grazing sheep, but no crops of any nature.  He advised that the vast majority of the Countries’ food is imported from the nearby European neighbours.  They apparently do not even eat a lot of lamb and instead export that product because it is generally too expensive for the ‘locals’.  Fortunately, he followed up our conversation with a large salad course to our meal that was a welcomed addition. 

This, however, got me thinking about the sustainability of that type of culture, and the need for innovative solutions.  If we can grow tomatoes in a greenhouse in the Vancouver region, why can’t others?  It made me realize that a lot of the things I take for granted back home are really very innovative and environmentally responsible, compared to the practices in many other parts of the world:
  • We generally have car pool and transit lanes on many arterial routes into and out of the cities (still LOTS of room for improvement).  We provide special parking for small cars, electric cars, and co-op cars.
  • We recycle a lot of our trash (the percentage is growing all the time – the District of North Vancouver recently introduced a food waste recycling program) and if our Municipalities are unable to provide recycling pick up or drop off, there are companies like Pacific Mobile that provide drop-off service for many non-compostable products that we as a society would otherwise throw out. 
  • We have available to us locally grown and raised produce.  I can even go to a major chain and buy vegetables and fruit grown locally in BC (far less often as we should be able to, but it is a start).  And if I am willing to split my shopping trip up, I can buy fresh and often organic meat and vegetables from smaller stores or directly from the producers.
  • We in BC enjoy one of the cleanest electricity grids in North America if not the world. 
  • We in BC have much better building standards for insulation, soon to be air tightness, and requirements to keep water out compared with much of the world.
I leave you with this thought:  

WIKI describes “produce” as a description that is often implying that the products are fresh and generally (being made available) in the same (region) where they were harvested.  

Think about this the next time you pick up a bag of grapes, melons, or even snap peas at the local supermarket.  Look at the labels for where the ‘produce’ was grown.  I think you will be shocked.   

Now, think of all the actions required to get the product from where it is grown to the shelf that is now in front of you.  Think of the fuel burned in trucks, boats and planes to move that product. Think of what chemicals and pollutants the ‘produce’ may have been exposed to back in the growing country.

Ask yourself. “Are these sustainable practices?”  I know my answer!